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1 Abelianization and Other Algebraic Topology Topics

Many thanks to Jiabao Yang, who provided me with his notes, since I missed this lecture.

1.1 Abelianization

Last lecture, we encountered a problem: groups can be complicated, and we can’t tell
whether they are different or not based on group presentations.! The solution, in our case,
is that abelian groups are not as complicated.

Definition 1.1. If G is a group, then its Abelianization Ab(G) is G/N, where N is the
smallest normal subgroup of G containing g1 g29; ! 9y L for all g1, g0 € G.

If G={a1,...,an|m1=1,...,7 = 1), then we add n(n — 1)/2 relations to get
Ab(G) = (a1,...,an |11 =1,... 7 = 1,a1a2 = aga1,a1a3 = azay,...,ap—10y = ApGp_1) -
Example 1.1.

Ab(Fy) = Ab((a1,a2)) = (a1,as | araz = asa;) = 72

Here is a fact we will not prove.

Theorem 1.1. IF G = G, then Ab(G) = Ab(G").
The converse is not true, however.
Example 1.2. F, % 7% but Ab(Fy) = Z? = Ab(Z?).

Example 1.3. Let A5 be the alternating group on five elements. This is nontrivial, but
Ab(As5) = 1.

Here is another fact we will not prove.

'In general, this problem is undecidable.



Proposition 1.1. Ifr; =1 is a relation in G, then any permutation of the letters of r; is
an equivalent relation in Ab(G).

Example 1.4. Let G = (a,b | abab™' = 1). Then
Ab(G) = (ab | abab™" = 1,ab = ba)
= (ab | aabb™t =1,ab = ba)

= (ab|a* =1,ab = ba)
~ 7,/97 x Z.

So Ab({a,b | abab™! = 1)) =2 Ab({a,b | a® = 1)).

So if we reorder the group before abelianization, we get the same group (up to isomor-
phism) after abelianization.

Example 1.5.
Ab(m1(Sg)) = Ab({an, . .., azg | araza; 'ay ' - - agg_1az4a5, ja2g~" = 1))
= Ab({a1, ..., ag | alal_l@%_l : "a2g—1a2_g1—1a2ga29_1 =1))

This relation just becomes 1 = 1, so we can ignore it.

= Ab((al, ‘e ,a29>)
=7%.

So m(Sy) for different g are different, as after abelianization, the Ab(mi(S,)) are not
isomorphic for different g.

Example 1.6.

Ab(m(Ng)) = Ab({a1, ..., a4 | ala3- - ag =1)) = 7971 x 7.)27,

where if Z97! x Z/27 = Ab((by, ..., by | bg = 1)), then the isomorphism sends b; +— a; for

i=1,...,9—1and by — aias--- a4 (check this yourself).

Since Ab(m) is distinct for every surface in our list, we conclude that no two of
S2,51,82,...,N1,Na, ... are homeomorphic. So we have proved the Poincaré conjecture
for n = 2!

1.2 Miscellaneous topics in algebraic topology

The rest of this lecture is non-testable material but is included for interest.



1.2.1 Euler characteristic and orientibility
Here are two more things about surfaces:

1. Euler characteristics: x(S) = “# vertices” - “# edges” + “# polygons” in a cellular
decomposition. Check that all operations won’t change this invariant.

2. orientibility: does a M&bius band embed in your surface (chapter 7 in Armstrong)

Using these two ideas, we can classify surfaces without using fundamental groups.

1.2.2 Homology

Definition 1.2. If X is a path-connected topological space, the first homology group of X
is H1(X) = Ab(m1(X)).

If X is not necessarily path-connected, Ho(X) = Z#path-components

1.2.3 Low and high dimensional topology
In general, we can classify the study of manifolds by their dimension:
e n < 3: low dimensional topology (not enough room to go wrong, not weird)

e n = 4: most weird things happen (enough room to go wrong, not enough room to fix
them)

e n > 5: high dimensional topology? (enough room to go wrong, enough room to fix
them)

1.2.4 Higher homotopy groups
Choose 1 € S* and p € X. Then

71(X,p) = {homotopy classes rel {1} of continuous maps S* — X s.t. 1+ p}.
Definition 1.3. Let xg € S™ and p € X. The n-th homotopy group of X based at p is
(X, p) = {homotopy classes rel {zo} of continuous maps S™ — X s.t. 1+ p}.

What is the group operation? First, let S™ = B™\ 9B™ and B" = [0,1] x --- x [0, 1].
In

So a map f:S™ — X such that f(xzo) = p can be thought of as a map

¢ f

I Br Y, gn X.

2This is Professor Conway’s area of research.



We have a projection map p : B™ — S™, and we can let 29 = p(0B"™). The map |phi : I"B"
is a homeomorphism.
Now, given f,g € m,(X,p), let f-g € m,(X,p) be

(f-9)(z1,... { (221,22, &n) x1 € 1[0,1/2]

9(2x1 — 1,29,...,2,) x1 € (1/2,1]

Example 1.7. Let n = 2. Then this looks like

Theorem 1.2. (m,(X,p),-) is an Abelian group for all n > 2.

and f - g evaluates to p on the set

Proof. Here is an intuitive sketch of why this is true. For n > 2, we can moe pieces around
in a different direction.

9

O

Theorem 1.3. Paths from p to q induce isomorphisms m,(X,p) to m,(X,q), so if X is
path-connected, we can write m,(X).

Theorem 1.4. For alln > 1, m,(S') = 1.

Proof. Here is the idea. Let g : S® — S'. Find the lift § of g. R is contractible, so § is
null homotopic. So g is, as well. O



Theorem 1.5. For all i <n, m;(S™) = 1.

Proof. Here is the idea. Show that any g : S* — S™ is homotopic to h : S* — S™ and
S™\ h(S%) # @. Choose ¢ in the complement. Then h is really a map S* — S™\ {q} = R".
R™ is contractible, so h (and hence g) is null homotopic. O

Theorem 1.6. 7,(S™) = Z and is generated by [idgn].

We can use this ro prove Brouwer’s fixed point theorem in all dimensions. Homology
is an easier way to do so.

What about 7, (S*) for n > k > 1? This is HARD. For the last 60 years, algebraic
topologies have tried to solve this; now people are bored.

Example 1.8.
T3(S?) 2 Z,

774(53) = Z/QZ>
m14(SY) 2 Z/120Z x Z./127 x 7./ 27.

There seems to be no general formula, but there exist techniques and subtle patterns,
such as m,4+1(S™) = Z/2Z for all n > 3.
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